
 International Journal of Computer Trends and Technology Volume 72 Issue 1, 35-39, January 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I1P106 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Guaranteed Delivery in Enterprise Integration

Architecture with IPaaS Environment

Swapnil Vaidya

Principal Architect and Solution Engineer, MuleSoft, A Salesforce Company, Virginia, USA.

Received: 20 November 2023 Revised: 29 December 2023 Accepted: 15 January 2024 Published: 24 January 2024

Abstract - Enterprise Architecture and Integration are becoming very critical fields in the computer science and information

technology industry. Especially with the cutting-edge technologies of IPaaS (Integration Platform As A Service), the introduction

and adoption of Artificial Intelligence, IoT, and many more trends, data from different dispersed and siloed systems must be

integrated to give a 360-degree view of related objects. There are over 65 integration patterns [1], and a combination of these

patterns can be used to bring data close to each other. The most important thing that developers and architects need to keep in

mind is that the functional and non-functional requirements to solve any problem play an important role in choosing the right

design and pattern to solve the problem. This article explains the guaranteed delivery pattern in IP, its importance, and various

retry options at the component level with MuleSoft CloudHub IPaaS [2] and Anypoint MQ [3] as a demonstrative toolset.

Keywords - Enterprise architecture, Guaranteed delivery pattern, IPaaS, Message queue, MuleSoft.

1. Introduction
Regarding integration, a crucial aspect of ensuring

reliability is the guaranteed delivery of data from source to

target systems. Enterprise integration involves connecting

diverse software applications and systems within an

organization to facilitate seamless collaboration. The goal is

to enhance efficiency, streamline business processes, and

ensure smooth data flow across various departments or

functions. In the current era, organizations, including those in

secure sectors like healthcare and banking, increasingly

embrace a cloud-first strategy. This trend underscores the

widespread adoption of Software-as-a-Service (SaaS)

enterprise software in an organization's technical stack

alongside existing legacy and on-premises tech stacks.

However, dispersed networks and systems pose the risk

of potential data loss due to unplanned outages. According to

a study conducted by Business Wire [4], 82% of companies

across all sectors have experienced at least one unplanned

downtime outage in the past three years, with an average of

two outages. Another study [5] reports that the average

downtime per hour across all businesses costs $260,000.

Considering the impact of data and transaction loss on

businesses, it becomes crucial to have reliable integration for

processing data from one system to another. Currently, due to

the pressure to deliver projects on time and a lack of sufficient

resources, many organizations and teams opt to complete

functional requirements while keeping non-functional

requirements, such as guaranteed delivery, on the backlog. To

raise awareness and emphasize the importance of reliable

delivery, this article focuses on guaranteed delivery patterns

from the learnings from different industries and discusses

essential components defining this pattern. Additionally,

based on the chosen tools for implementing these patterns, the

article explores multiple levels to set up a retry mechanism.

The focus will be on brainstorming and presenting some of

these options using MuleSoft, a leading IPaaS in the market.

2. Understanding Guaranteed Delivery
In crafting any solution architecture or design, the focal

point consistently revolves around fulfilling both functional

and non-functional requirements. Functional requirements

succinctly delineate the actual functionality, such as defining

a service responsible for receiving orders from the CRM

system and updating the ERP systems. On the other hand, non-

functional requirements encapsulate the nature and behaviour

of the solution, encompassing aspects like response time,

reliability, error handling, and exception management.

The concept of guaranteed delivery is among the array of

non-functional requirements crucial for rendering any solution

reliable. This becomes especially pertinent for solutions that

involve alterations (insertions, updates, or deletions) in

various systems or the context of event-driven architecture [1],

ensuring that events or requests originating from the source

are unequivocally delivered to the target system, thereby

solidifying the solution's reliability. But what factors

contribute to the potential loss of such events? Two primary

reasons can be identified:

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Swapnil Vaidya / IJCTT, 72(1), 35-39, 2024

36

• Technical Error – Errors occurring during the processing

of requests within the solution, stemming from issues

such as network connectivity, memory constraints, or

CPU-related challenges in the application, can be

addressed through retries without necessitating

modifications to the overall solution.

• Business Error – Errors arising from business rule

validation or data exceptions that mandate corrections to

request data present another category of potential event

loss.

2.1. Components

Failures are an unavoidable aspect, whether stemming

from technical glitches or business-related factors, as

previously discussed. Crafting a system with guaranteed

delivery involves a meticulous process of catching exceptions

during processing and implementing retries for requests or

events, thus defining the system's reliability. Broadly

speaking, the design of any retry pattern for guaranteed

delivery necessitates incorporating or combining the

following components at a higher level.

2.1.1. Flexible IPaaS Tool

In the context of this article, the focus centres on

exploring guaranteed delivery and retry mechanisms tailored

for solutions primarily leveraging SaaS or cloud-first

enterprise systems. To maintain simplicity, the discussion is

narrowed down to an Integration Platform as a Service (IPaaS)

toolset, known for its proficiency in seamlessly integrating

both SaaS and on-premises systems. While numerous vendors

populate the market, the article uses MuleSoft to showcase

diverse capabilities and approaches. MuleSoft stands out as a

leader in the Gartner quadrant, solidifying its position as a

prominent IPaaS provider [6].

2.1.2. Messaging Queue Tool

A messaging queue, commonly known as a message

queue or message broker, serves as a communication

mechanism employed in distributed systems to facilitate the

exchange of messages among various software components.

The fundamental goal of a messaging queue is to streamline

asynchronous communication, effectively separating the

sender and receiver of messages and enabling them to function

independently.

Multiple providers extend message queue services.

Within the context of this article, Anypoint MQ [3], a robust

API-based MQ solution that seamlessly integrates with IPaaS

providers, has been chosen to demonstrate architecture with a

messaging queue.

3. Approach
Before discussing the retry approaches, let us define core

principles that will be at the centre of the approach to be

chosen for the scenarios.

3.1. Core Principles

Below are guiding principles based on lessons learned

from various industries:

• Treat business failures and technical system failures

differently.

• When determining the Service Level Agreement (SLA)

for synchronous calls, account for the time lag caused by

the retry mechanism.

• Retries should be integrated into the implementation for

all use cases involving guaranteed message delivery.

• Move time-consuming retries (such as exponential or

waiting retries) to an asynchronous process to reduce

dependencies on resources.

• From a traceability perspective, ensure that correlation

and trace ID are available with the actual payload during

the retry.

• Ensure that the retry mechanism is not infinite.

• Ensure proper exceptions and necessary alerting are

handled during the retry process.

3.2. Retry Approaches

The retry mechanism plays a crucial role in ensuring the

successful processing of messages, guaranteeing either

delivery or triggering exception notifications within a set

number of retries. Various scenarios require diverse retry

approaches, such as connectivity failures, backend system

downtimes, throttling limit breaches, or certain business

errors.

These approaches aim to secure message delivery or

initiate notifications within a finite retry framework. The

below sub-sections explore specific scenarios, discuss

approaches to handle them, and provide examples of relevant

toolsets to be used in the solutions.

3.2.1. Handling Transient Errors

Scenario

It is very common to encounter transient errors, such as

network glitches while connecting to the end system or API,

intermittent failures, and so on, which need a quick retry.

Best fit

Synchronous and Asynchronous processes that need

simple connectivity retry.

Approach

• Utilize component or connector-specific options provided

by the toolset. For instance, in the context of IPaaS

MuleSoft, leverage the Until-Successful scope with the

connector, as illustrated in the Anypoint Studio snippet

below (Figure 1). In this example, the HTTP request

connector is encapsulated within the Until-Successful

scope, configured with finite retries. This setup facilitates

connecting to an external HTTP API provider using the

HTTP requester connector.

Swapnil Vaidya / IJCTT, 72(1), 35-39, 2024

37

• Have finite retries within the defined SLA (service level

agreement). (For example, retry 3 times within 1 second

so the SLA of 2 seconds can be met)

Limitation

This is not a comprehensive retry. Another approach

should be chosen for comprehensive retries.

Fig. 1 MuleSoft HTTP connector with Until-Successful

3.2.2. Short Retry Low Volume Failures

Scenario

There might be connectivity issues with the end systems

due to maintenance, the end system being down, provider

certificate expiry, client certificate expiration, etc. These

situations may require some downtime before the issue can be

resolved.

Best fit

• Synchronous integration requires guaranteed message

delivery or reconciliation, either through retry

mechanisms or notifications.

• Asynchronous processes, such as incremental loads

involving a few thousand records, require guaranteed

message delivery or reconciliation through retry

mechanisms or notifications.

• Performance during the retry is a key consideration.

• Number of messages not exceeding a few thousand of

messages per use case.

Approach

• Utilize options specific to the component or connector

provided by the toolset. For instance, with IPaaS

MuleSoft, employ the Until-Successful scope with the

connector, as illustrated in the Anypoint Studio snippet

below (Figure 1). This helps confirm that it is not a

persistent problem.

• If the processing still fails, have a process that

• Notify the consumer via error response and message

that talks about the retry.

• Send the message to the message queue like

Anypoint MQ.

• Use exponential retry or wait for retry pattern with a

finite number of retries and interval times and the

ability to push message to dead letter queue or error

queue. Figure 2 below shows a

sample exponential retry design for MuleSoft and

Anypoint MQ.

• Send notifications or handle messages in the dead

letter queue.

Limitation

Based on used tool sets like MQ and their ability to handle

inflight messages, these patterns need to be used in low-

volume rather than high-volume use cases.

3.2.2. Short Retry High Volume Failures

Scenario

In scenarios involving ETL or high-volume use cases,

where processing millions of records is necessary, issues may

arise in connecting to the end system. These problems could

be attributed to maintenance, the end system being down,

provider certificate expiry, client certificate expiration,

credentials expiration, and similar factors. Resolving such

issues might require some downtime.

Best fit

• Asynchronous processes, such as the initial ETL load use

cases requiring the processing of millions of records,

demand guaranteed message delivery or reconciliation

through retry mechanisms or notifications.

• Guaranteed delivery is a key, and performance during

retry is a secondary consideration.

• Use cases process millions of messages.

Approach

• Utilize the out-of-the-box reconnection strategy of the

component or connector to reaffirm that it is not a

persistent problem. For instance, MuleSoft's HTTP

connector, illustrated in Figure 3 below, includes a

reconnection strategy that can be employed.

• If the processing still fails, have a process that

• Send the message to the persistent Message Queue.

• Implement an exponential retry or wait-for-retry

pattern with a finite number of retries, interval times,

and the ability to move the message to a dead letter

queue or error queue. Figure 2 above illustrates a

sample exponential retry design for MuleSoft and

Anypoint MQ.

• Send notifications or handle messages in the dead

letter queue.

Swapnil Vaidya / IJCTT, 72(1), 35-39, 2024

38

Fig. 2 Sample retry process for technical failures

Color Code

Retry Queue DLQ

Anypoint MQ

Retry APP
API APP

Receive success/Fail as response from retry

Yes

No

No
No

?

Retry Process for Technical Failures

Set message

properties

Technical

Exception
Send CH

Alert

Retry

exhausted

?

Success or

Business

Failure?

Send ACK, Set

message property

and publish message

again in Q

Send CH

Alert

Send ACK to

delete message

from Q

Send email

Main APIVAPP Retry App

Retry processing failed message

Messge Properties

- api

- url

- method

- retryCount

- Delivery Delay

Main API/APP-

Logic to push

message to queue for

retry needed per API

Retry App

Dynamic completely

reusable

Yes

No

Swapnil Vaidya / IJCTT, 72(1), 35-39, 2024

39

 Fig. 3 Sample reconnection strategy of MuleSoft connector

3.2.3. Business Exceptions

Scenario

Failures attributed to business rules or data validation

pose challenges for automated retries, as they often vary based

on use cases. However, when ensuring guaranteed message

processing and delivery becomes a part of Non-Functional

Requirements (NFR), a step-by-step retry approach can be

employed when applicable. Automated retries for business

failures are not always mandatory, and it may suffice to send

appropriate business failure notifications or reconciliation

reports to the consumer.

Best fit

• Upon failure, the sender cannot resend the corrected

messages.

• When business validation type failure is due to failure of

dependent lookup events, for example, an account lookup

needs to be done to update the address in Salesforce, and

if the account is unavailable.

• Applicable for both Synchronous and Asynchronous use

cases.

Approach

• Capture the specific business validation exception that

needs retry.

• Based on the volume of the use case, send the messages

to the appropriate message queue tools for retry.

• As agreed upon with the various stakeholders from the

business and project, notify the business validation

failures.

• Business users fix the issue and send the message for

reprocessing. (This can also be determined by the use case

requirements to write an additional retry process that

listens to the messages in the message queue).

4. Impact
Based on practical learnings from direct industry

experience, the following impacts have been observed when

best-fit-for-purpose approaches are used to solve specific retry

needs for guaranteed delivery:

• Cost-effective solutions: Not all use cases require

dedicated resources to design and implement retry

mechanisms. Depending on the nature of the use case, less

costly and out-of-the-box components can be used (see

Figure 1).

• Reduced operations effort: Tackling exceptions and

retrying them helps with better tracking and providing

timely actions, either retry or notification, which aids in

maintaining continuous synchronization of data between

source and destination systems.

• Business continuity: The impact due to downtime would

be absorbed by the guaranteed delivery, resulting in little

to no impact on business.

5. Conclusion
Guaranteed delivery is a critical yet often overlooked non-

functional requirement that significantly influences the

reliability and stability of any integration. In a cloud-first

environment, implementing retries requires special attention

and different strategies. The factors and some variants

discussed in this article will assist various organizations in

selecting the right approach and toolset needed to make their

integration in the IPaaS environment reliable.

References
[1] Gregory Hohpe, and Bobby Woolf, Enterprise Integration Patterns, Pearson India, pp. 1-737, 2003. [Google Scholar] [Publisher Link]

[2] CloudHub Overview, MuleSoft. [Online]. Available: https://docs.mulesoft.com/cloudhub/

[3] Anypoint MQ Overview, MuleSoft. [Online]. Available: https://docs.mulesoft.com/mq/

[4] Human Error is More Common Cause of Unplanned Downtime in Manufacturing than any other Sector, According to New Research,

Businesswire, 2017. [Online]. Available: https://www.businesswire.com/news/home/20171106006370/en/Human-Error-Common-

Unplanned-Downtime-Manufacturing-Sector

[5] Stat of the Week: The (Rising!) Cost of Downtime, Aberdeen Strategy & Research, 2016. [Online]. Available:

https://www.aberdeen.com/blogposts/stat-of-the-week-the-rising-cost-of-downtime/

[6] Gartner Names MuleSoft a Leader, MuleSoft. [Online]. Available: https://www.mulesoft.com/lp/reports/gartner-magic-quadrant-ipaas

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gregory+Hohpe%2C+Bobby+Woolf%2C+Enterprise+Integration+Patterns&btnG=
https://www.google.co.in/books/edition/Enterprise_Integration_Patterns/wdkbuAEACAAJ?hl=en
https://docs.mulesoft.com/cloudhub/
https://docs.mulesoft.com/mq/
https://www.businesswire.com/news/home/20171106006370/en/Human-Error-Common-Unplanned-Downtime-Manufacturing-Sector
https://www.businesswire.com/news/home/20171106006370/en/Human-Error-Common-Unplanned-Downtime-Manufacturing-Sector
https://www.aberdeen.com/blogposts/stat-of-the-week-the-rising-cost-of-downtime/
https://www.mulesoft.com/lp/reports/gartner-magic-quadrant-ipaas

